PYTHAGOREAN THEOREM

The PYTHAGOREAN THEOREM shows the ralationship between the legs (shorter lengths) and the hypotenuse (longest side) of a right triangle.

USE THE PYTHAGOREAN THEOREM TO SHOW IF THE TRIANGLE IS A RIGHT ANGLE TRIANGLE

$$a^{2} + b^{2} = c^{2}$$
 $9 + 7 = 12^{2}$
 $(9 \times 9) + (7 \times 7) = 144$
 $81 + 49 = 144$
 $130 \neq 144$

This is not a right angle triangle

$$a^{2} + b^{2} = c^{2}$$
 $9^{2} + 12 = 15$
 $(9 \times 9) + (12 \times 12) = 225$
 $81 + 144 = 225$
 $225 = 225$

This is a right angle triangle

FIND THE MISSING SIDE FOR EACH TRIANGLE

$$a_{2}^{2} + b_{2}^{2} c_{2}^{2}$$
 $a_{1}^{2} + 12 = 13$
 $a_{2}^{2} + 144 = 169$
 $a_{2}^{2} = 144 = 169$
 $a_{2}^{2} = 169 - 169$
 $a_{3}^{2} = 25$

$$a^{2} + b^{2} = c^{2}$$
 $12 + b^{2} = 20$
 $144 + b^{2} = 400$
 $b^{2} = 400 - 144$
 $b^{2} = 256$
b = 16

$$\begin{array}{ccc}
 2 & 2 & 2 \\
 a_{2} + b_{\overline{2}} & c_{2} \\
 a_{2} + 15 & = 17 \\
 a_{2} + 225 & = 289 \\
 a & = 64
 \end{array}$$

a = 8

Mathcrush.com

